Linear symmetries of Boolean functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear symmetries of Boolean functions

In this note we study the linear symmetry group LS(f ) of a Boolean function f of n variables, that is, the set of all ∈ GLn(2) which leave f invariant, where GLn(2) is the general linear group on the field of two elements. The main problem is that of concrete representation: which subgroups G of GLn(2) can be represented as G= LS(f ) for some n-ary k-valued Boolean function f. We call such sub...

متن کامل

Structural Detection of Symmetries in Boolean Functions

Functional symmetries provide significant benefits for multiple tasks in synthesis and verification. Many applications require the manual specification of symmetries using special language features such as symmetric data types. Methods for automatically detecting symmetries are based on functional analysis, e.g. using BDDs, or structural methods. The latter search for circuit graph automorphism...

متن کامل

Fast computation of symmetries in Boolean functions

Symmetry detection in completely specified Boolean functions is important for several applications in logic synthesis, technology mapping, BDD minimization, and testing. This paper presents a new algorithm to detect four basic types of two-variable symmetries. The algorithm detects all pairs of symmetric variables in one pass over the shared BDD of the multi-output function. The worst-case comp...

متن کامل

Representing Boolean Functions as Linear Pseudo-Boolean Constraints

A linear pseudo-Boolean constraint (LPB) is an expression of the form a1 · l1 + . . .+am · lm ≥ d, where each li is a literal (it assumes the value 1 or 0 depending on whether a propositional variable xi is true or false) and the a1, . . . , am, d are natural numbers. The formalism can be viewed as a generalisation of a propositional clause. It has been said that LPBs can be used to represent B...

متن کامل

Cryptographical Boolean Functions Construction from Linear Codes

This paper presents an extension of the Maiorana-McFarland method for building Boolean functions with good cryptographic properties. The original Maiorana-McFarland construction was proposed to design bent functions. Then, it was extended in [1] to build highly nonlinear resilient functions. The classical construction splits the set of variables into two separate subsets. There, is proposed a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2005

ISSN: 0166-218X

DOI: 10.1016/j.dam.2005.02.008